PIAS3 promotes homology-directed repair and distal non-homologous end joining
نویسندگان
چکیده
A DNA double-strand break (DSB) is the most severe form of DNA damage and is mainly repaired through homologous recombination (HR), which has a high fidelity, or non-homologous end joining (NHEJ), which is prone to errors. Defects in the DNA damage response lead to genomic instability and ultimately the predisposition of organs to cancer. Protein inhibitor of activated STAT-1 (PIAS1), which is a potential small ubiquitin-related modifier (SUMO) ligase, has been reported to be involved in DSB repair. The present study identified that another member of the PIAS family, PIAS3, is also an enhancer for HR- and NHEJ-mediated DSB repair. Furthermore, the overexpression of PIAS3 was demonstrated to increase the resistance of HeLa cells to ionizing radiation (IR), indicating a significant role for PIAS3 in the DNA damage response (DDR) pathway.
منابع مشابه
Dual Roles for DNA Polymerase Theta in Alternative End-Joining Repair of Double-Strand Breaks in Drosophila
DNA double-strand breaks are repaired by multiple mechanisms that are roughly grouped into the categories of homology-directed repair and non-homologous end joining. End-joining repair can be further classified as either classical non-homologous end joining, which requires DNA ligase 4, or "alternative" end joining, which does not. Alternative end joining has been associated with genomic deleti...
متن کاملA role for the p53 tumour suppressor in regulating the balance between homologous recombination and non-homologous end joining
Loss of p53, a transcription factor activated by cellular stress, is a frequent event in cancer. The role of p53 in tumour suppression is largely attributed to cell fate decisions. Here, we provide evidence supporting a novel role for p53 in the regulation of DNA double-strand break (DSB) repair pathway choice. 53BP1, another tumour suppressor, was initially identified as p53 Binding Protein 1,...
متن کاملDNA End Resection: Facts and Mechanisms
DNA double-strand breaks (DSBs), which arise following exposure to a number of endogenous and exogenous agents, can be repaired by either the homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways in eukaryotic cells. A vital step in HR repair is DNA end resection, which generates a long 3' single-stranded DNA (ssDNA) tail that can invade the homologous DNA strand. The gene...
متن کاملHomology-directed repair with DharmaconTM Edit-RTM CRISPR-Cas9 reagents and single-stranded DNA oligos
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) is a revolutionary tool that utilizes an RNA-guided nuclease for efficient site-directed genome engineering in various eukaryotic systems. The double-strand breaks (DSBs) created by CRISPR-Cas9 are repaired in the cell by two predominant mechanisms: imprecise non-homologous end joining (NHEJ) a...
متن کاملThe splicing-factor related protein SFPQ/PSF interacts with RAD51D and is necessary for homology-directed repair and sister chromatid cohesion
DNA double-stranded breaks (DSBs) are among the most severe forms of DNA damage and responsible for chromosomal translocations that may lead to gene fusions. The RAD51 family plays an integral role in preserving genome stability by homology directed repair of DSBs. From a proteomics screen, we recently identified SFPQ/PSF as an interacting partner with the RAD51 paralogs, RAD51D, RAD51C and XRC...
متن کامل